

Year 13 Physics Curriculum Summary

SUBJECT: Physics

When?	Knowledge	Understanding	Assessment
Motion in a circle	KnowledgeMotion in a circleBe able to:• Define and explain centripetal force• Calculate angular speed• Calculate centripetal acceleration• Calculate centripetal force- Simple Harmonic MotionBe able to:• State characteristic features of simple harmonic motion• State the condition for shm• Graphical representations linking x, v, a and t• Calculate maximum speed• Calculate maximum acceleration	 Understanding Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. Motion in a circle Estimate the acceleration and centripetal force in situations that involve rotation. Simple Harmonic Motion Sketch relationships between x, v, a and a – t for simple harmonic oscillators. Students should recognise the use of the small-angle approximation in the derivation of the time period for examples of approximate SHM. Investigation of the factors that determine the resonant frequency of a driven system. 	Assessment Motion in a Circle Test Simple Harmonic Motion Test

		Students will carry out a range of practicals during the topic,	
-Gravitational	Gravitational fields	some of which will be formally assessed for the practical	
fields	Be able to:	endorsement qualification.	Gravitational fields Test
	 Concept of a force field 		
	 Representation by 	Gravitational fields	Electric Fields Test
	gravitational field lines		
	• Define g	• Students can estimate the gravitational force between a	
	• Define and explain	variety of objects	
	gravitational potential	• Students should recognise that a force field can be	
	• Calculate work done in a	represented as a vector, the direction of which must be	
	moving mass	determined by inspection	
	Calculate gravitational	 Students use graphical representations to investigate 	
	potential V	relationships between v, r and g	
	Define Gravity	• Estimate various parameters of planetary orbits, eg	
	Calculate the force	kinetic energy of a planet in orbit.	
	between two point masses	• Use logarithmic plots to show relationships between T	
	• Calculate the magnitude of	and r for given data	
	g in a radial field		
	• Describe relation of orbital		
	period and speed to radius	<u>– Electric Fields</u>	
	of circular orbit		
	• Consider energy for an	• Students can estimate the magnitude of the electrostatic	
	orbiting satellite	force between various charge configurations	
	• Significance of a	• Students can investigate the patterns of various field	
	geosynchronous orbit	configurations using conducting paper (2D) or	
		electrolytic tank (3D).	
		• Understanding of definition of absolute electric	
		potential, including zero value at infinity, and of	
	<u>– Electric Fields</u>	electric potential difference	
Electric Fields	Be able to:		
	Define electric field		
	strength, E		
	Represent electric		
	field lines		
	• Calculate E in a		
	uniform field		
	Calculate work		
	done in moving		
	8		

 charge Calculate the force between charged particles using Coulomb's law Compare electric and gravitational fields Define and explain absolute electric potential Calculate V in radial field Calculate E in radial field 		
 Thermal physics Be able to: Calculating the change in energy Calculate for the change of temperature (specific heat capacity) Calculating the change in energy Calculate for the change of state (specific latent heat) Calculating the change in energy Calculating the change in energy Calculating the change in energy Calculate for the change of state (specific latent heat) 	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. Thermal physics Investigate the factors that affect the change in temperature of a substance using an electrical method or the method of mixtures. Students should be able to identify random and systematic errors in the experiment and suggest ways to remove them. Investigate, with a data logger and temperature sensor, the change in temperature with time of a substance undergoing a phase change when energy is supplied at a constant rate 	Thermal Physics Test Capacitors Test
	<u>Capacitors</u>	

Capacitors	 <u>Capacitors</u> Be able to: Define capacitance Derivation of E = ½ QV Interpretation of area under the graph of Q against V. Graphical representation of charging/dischargin g capacitor Calculate/determine time constant 'RC' Quantitative treatment of capacitor discharge 	 Determine the relative permittivity of a dielectric using a parallel-plate capacitor. Investigate the relationship between C and the dimensions of a parallel-plate capacitor eg using a capacitance mete Graphical representation of charging and discharging of capacitors through resistors. Corresponding graphs for Q, V and I against time for charging and discharging 	
- Gases	GasesBe able to:• Describe gas laws as experimental relationships between p, V, T and 	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. <u>-Gases</u> Gas laws as experimental relationships between p, V, T and the mass of the gas Students should understand that the gas laws are empirical in nature whereas the kinetic theory model 	Gases Test magnetic fields Test Electromagnetic Induction Test

	ideal gas equation	arises from theory
	• Describe the	Appreciation of how knowledge and understanding of
	difference between	the behaviour of a gas has changed over time
	molar mass and	
	molecular mass	<u>– Magnetic Fields</u>
	• Explain the	
	relationship	• Investigate how the force on a wire varies with flux
	between p, V, and T	density, current and length of wire using a top pan
	using a simple	balance
	molecular model	Convert between 2D representations and 3D situations
	• Derivation and	• Investigate, using a search coil and oscilloscope, the
	assumptions leading	effect on magnetic flux linkage of varying the angle
	to the kinetic theory	between a search coil and magnetic field direction
	equation	
	• Calculate the	– Electromagnetic induction
	average molecular	
	KE	• Applications such as a straight conductor moving in a
		magnetic field
		• Use of an oscilloscope as a dc and ac voltmeter, to
	<u>– Magnetic Fields</u>	measure time intervals and frequencies, and to display
– Magnetic Fields	Be able to:	ac waveforms
		Investigate relationships between currents, voltages
	Calculate force on	and numbers of coils in transformers
	charged particles/a	
	current-carrying	
	wire in a magnetic	
	field	
	• State Fleming's left-	
	hand rule	
	Define magnetic	
	flux density and	
Electromagnetic	tesla	
induction	 Application in 	
maacaon	devices such as	
	cyclotrons	
	Define magnetic	
	flux	
	– Electromagnetic induction	

Describe simple
experimental
phenomena
• State and explain
Faraday's and
Lenz's lawsCalculate the
Calculate the magnitude of
induced emf as
equal to rate of
change of flux
linkage
• Define and calculate
flux linkage
• Applications such as a moving straight
conductor
Calculate emf
induced in a coil
rotating uniformly
in magnetic field
• Describe the
operation of a transformer
Use the transformer
equation
Calculate the
efficiency of a
transformer

	Stars	Students will carry out a range of practicals during the topic,	
Stars	Be able to:	some of which will be formally assessed for the practical	
	Describe relation	endorsement qualification.	Stars Test
	between brightness		Radioactivity Test
	and apparent	Stars	Nuclear Energy Test
	magnitude		
	Describe relation	• General shape of black-body curves, use of Wien's	
	between intensity	displacement law to estimate black-body temperature	
	and apparent	of sources	
	magnitude	• Students should be familiar with the light curve of	
	Measure m from	typical type 1a supernovae	
	photographic plates	 Calculation of the radius of the event horizon for a 	
	 Define parsec and 	black hole, Schwarzschild radius	
	light year	 Use of type 1a supernovae as standard candles to 	
	 Define M in relation 	determine distances. Controversy concerning	
	to m	accelerating Universe and dark energy	
	 State Stefan's law 	 Students should be familiar with the position of the 	
	and Wien's	Sun on the HR diagram	
	displacement law	Suit on the fire diagram	
	Describe general	Radioactivity	
	shape of black-body		
	curves	• Appreciation of how knowledge and understanding of	
	 Use Wein's law to 	the structure of the nucleus has changed over time.	
	estimate	• Appreciation of balance between risk and benefits in	
	temperature	the uses of radiation in medicine	
	• Use Stefan's law to	• Investigation of the inverse-square law for gamma	
	estimate	radiation	
	temperature	• Investigate the decay equation using a variety of	
	• State the inverse-	approaches (including the use of experimental data,	
	square law and its	dice simulations etc) and a variety of analytical	
	assumptions	methods.	
	Description of main		
	classes: O, B, A, F,		
	G , K and M	<u>–Nuclear Energy</u>	
	 Describe the H-R 		
	diagram, general	• Existence of nuclear excited states; γ ray emission;	
	shape: main	application eg use of technetium-99m as a γ source in	
	sequence, dwarfs	medical diagnosis	
	sequence, uwarts	incurcur diagnosis	

	 and giants Describe stellar evolution – path of star similar to sun on H-R diagram Define properties of supernovae, neutron stars and black holes Use of supernovae as standard candles Describe supermassive black holes Calculate the radius of an event horizon for a black hole 	 Students may be expected to identify, on the plot, the regions where nuclei will release energy when undergoing fission/fusion Simple calculations involving mass difference and binding energy Simple calculations from nuclear masses of energy released in fission and fusion reactions Students study a simple mechanical model of moderation by elastic collisions Appreciation of balance between risk and benefits in the development of nuclear power.
Radioactivity	<u>Radioactivity</u> Be able to:	
	Qualitative study of	
	Rutherford scattering	
	 Describe α, β and γ radiation properties and experimental identification 	
	 Define and explain the 	
	inverse square law for γ radiation	
	• Describe the experimental verification of the inverse square law	
	 Describe the random nature of radioactive 	
	decay	
	Calculate the constant	
	decay probabilityCalculate the half-life	
	Calculate the nan-incCalculate the activity	

	Determination of above		
	from graphical decay data		
Nuclear Energy			
	-Nuclear Energy		
	Be able to:		
	• Apply E=mc ² to all		
	energy changes		
	Calculate mass		
	difference and		
	binding energy		
	• Interpret graph of		
	average binding		
	energy per nucleon		
	against nucleon		
	number		
	• Describe fission and		
	fusion processes		
	Calculate energy		
	released in fission		
	and fusion reactions		
	Describe induced		
	fission by thermal		
	neutrons		
	• Explain the		
	functions of the		
	moderator, control		
	rods and the coolant		
	in a thermal nuclear		
	reactor		
	• Describe the safety		
	aspects		
	F		
	Cosmology	Students will carry out a range of practicals during the topic,	
	Be able to:	some of which will be formally assessed for the practical	Cosmology Test
	Calculate red-	endorsement qualification.	Lenses and optical telescopes Test
	shift, frequency	1	r r r r r r r r r r r r r r r r r r r
	and wavelength	Cosmology	

given v << c • State Hubble's law and use to estimate age of universe • Qualitative treatment of Big Bang theory • Describe quasars	 Calculations on binary stars viewed in the plane of orbit Qualitative treatment of Big Bang theory including evidence from cosmological microwave background radiation, and relative abundance of hydrogen and helium 	
Lenses and optical telescopes Be able to: • Use of lenses- principal focus, focal length of converging lenses • Draw ray diagrams for formation of images by converging lenses • Draw ray diagrams to show the image formation in normal adjustment • Calculate angular magnification • Ray diagrams for concave/convex mirrors in reflecting telescopes • Description of merits of reflectors and	 Relative merits of reflectors and refractors including a qualitative treatment of spherical and chromatic aberration Similarities and differences of radio telescopes compared to optical telescopes. Discussion should include structure, positioning and use, together with comparisons of resolving and collecting powers Students should be familiar with the rad as the unit of angle 	

refractors State the diffraction pattern produced by circular aperture Describe the use, structure and operation of CCD	
---	--