

Year 13 Pure Maths Curriculum Summary

- Y13 Pure Mathematics

When?	Topic	Knowledge	Unit Assessments
HALF TERM 1	Algebraic methods	- Use proof by contradiction to prove true statements - Multiply and divide two or more algebraic fractions - Add or subtract two or more algebraic factions - Convert an expression with linear factors in the denominator into partial fractions - Convert an expression with repeated linear factors in the denominator into partial fractions - Divide algebraic expressions - Convert an improper fraction into partial fraction form	- proof by contradiction - add, subtract, times, divide algebraic fractions - partial fractions with linear factors, repeated factors in denominator - algebraic long division - improper fractions
	Functions and graphs	- Understand and use the modulus function - Understand mappings and functions, and use domain and range - combine two or more functions to make a composite function - know how to find the inverse of a function graphically and algebraically - Sketch the graphs of the modulus function $y=\|f(x)\|$ and $y=f(\|x\|)$ - Apply a combination of two (or more) transformations to the same curve - Transform the modulus function	- modulus function - mappings and functions - domain and range - composite function - inverse of a function - graphs of the modulus function $y=\|f(x)\|$ and $y=f(\|x\|)$ - two (or more) transformations to the same curve

When?	Topic	Knowledge	Unit Assessments
	Sequences and series	- Find the nth term of an arithmetic sequence - Prove and use the formula for the sum of the first n terms of an arithmetic series - Find the nth term of a geometric sequence - Prove and use the formula for the sum of a finite geometric series - Prove and use the formula for the sum to infinity of a convergent geometric series - Use sigma notation to describe series - Generate sequences from recurrence relations - Model real-life situations with sequences and series	- N-th term of an arithmetic and geometric - Sn - Sum to infinity - sigma notation - recurrence relations - Model
HALF TERM 2	Binomial expansion	- Expand $(1+x)^{n}$ for any rational constant n and determine the range of values of x for which the expression is valid - Expand $(a+b x)^{n}$ for any rational constant n and determine the range of values of x for which the expression is valid - Use partial fractions to expand fractional expressions	- $(1+x)^{n}$ - $(a+b x)^{n}$ - Use partial fractions
	Radians	- Convert between degrees and radians and apply this to trigonometric graphs and their transformations - Know exact values of angles measured in radians - Find an arc length using radians - Find areas of sectors and segments using radians - Solve trigonometric equations in radians - Use approximate trigonometric values when θ is small	- Use radians, with trig graphs and their transformations - Exact values eg $30=\frac{\pi}{6}$ - Arc length - Sector area - Solve trig equations with radians - Trig approximations when Θ is small

When?	Topic	Knowledge	Unit Assessments
	Trigonometric functions	- Understand the definition of secant, cosecant and cotangent and their relationship to cosine, sine and tangent - Understand the graphs of secant, cosecant and cotangent and their domain and range - Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent - Prove and use $\sec ^{2} x \equiv 1+\tan ^{2} x$ and $\operatorname{cosec}^{2} x \equiv 1+\cot ^{2} x$ - understand and use inverse trigonometric functions and their domain and ranges	- Use sec, cosec, cot, and their graphs - Prove identities with sec, cosec, cot - Prove and use $\sec ^{2} x \equiv 1+\tan ^{2} x$ and $\operatorname{cosec}^{2} x \equiv 1+\cot ^{2} x$ - inverse trigonometric functions and their domain and ranges
	Trigonometry and modelling	- Prove and use the addition formulae - understand and use the double-angle formulae - Solve trigonometric equations using the double-angle and addition formulae - Write expressions of the form $a \cos \theta \pm b \sin \theta$ in the form $R \cos (\theta \pm a)$ or $R \sin (\theta \pm a)$ - Prove trigonometric identities using a variety of identities - Use trigonometric functions to model real-life situations	- addition formulae - double-angle formulae - Solve trigonometric equations using the doubleangle and addition formulae - $R \cos (\theta \pm a), R \sin (\theta \pm a)$ - Prove trigonometric identities - Use trigonometric functions to model real-life situations
$\begin{aligned} & \text { HALF } \\ & \text { TERM } 3 \end{aligned}$	Parametric equations	- Convert parametric equations into Cartesian form by substitution - Convert parametric equations into Cartesian form using trigonometric identities - Understand and use parametric equations of curves and sketch parametric curves - Solve coordinate geometry problems involving parametric equations - Use parametric equations in modelling in a variety of contexts	- parametric equations into Cartesian - parametric equations into Cartesian form using trigonometric identities - use parametric equations of curves - sketch parametric curves - Solve coordinate geometry problems - modelling

\begin{tabular}{|c|c|c|c|}
\hline When? \& Topic \& Knowledge \& Unit Assessments \\
\hline \& Differentiation \& \begin{tabular}{l}
- Differentiate trigonometric functions \\
- Differentiate exponentials and logarithms \\
- Differentiate functions using the chain, product and quotient rules \\
- Differentiate parametric equations \\
- Differentiate functions which are defined implicitly \\
- Use the second derivative to describe the behaviour of \\
a function \\
- Solve problems involving connected rates of change and construct simple differential equations
\end{tabular} \& \begin{tabular}{l}
Differentiation of/using \\
- trigonometric functions \\
- exponentials and logarithms \\
- using the chain, product and quotient rules \\
- parametric equations \\
- implicit \\
- second derivative connected rates of change differential equations
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { HALF } \\
\& \text { TERM } 4
\end{aligned}
\] \& Numerical methods \& \begin{tabular}{l}
- Locate roots of \(f(x)=0\) by considering changes of sign \\
- Use iteration to find an approximation to the root of the equation \(f(x)=0\) \\
- Use the Newton-Raphson procedure to find approximations of the solutions of equations in the form \(f(x)=0\) \\
- Use numerical methods to solve problems in context
\end{tabular} \& \begin{tabular}{l}
- Locate roots \\
- Iteration \\
- Newton Raphson \\
- Numerical methods

\end{tabular}

\hline \& Integration \& | - Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions in the form of $f(a x+b)$ |
| :--- |
| - Use trigonometric identities in integration |
| - Use the reverse of the chain rule to integrate more complex functions |
| - Integrate functions by making a substitution, using integration by parts and using partial fractions |
| - Use integration to find the area under a curve |
| - Use the trapezium rule to approximate the area under a curve |
| - Solve simple differential equations and model real-life situations with differential equations | \& | Integrate: |
| :--- |
| - Trig functions |
| - Exponentials |
| - Using reverse chain rule |
| - Using trig identities |
| - By substitution |
| - By parts |
| - Using partial fractions |
| - To find area under a curve |
| Trapezium rule |
| Solve differential equations, and model |

\hline
\end{tabular}

Maths Curriculum Summary

