

Year 13 Pure Maths Curriculum Summary

– Y13 Pure Mathematics

When?	Торіс	Knowledge	Unit Assessments
HALF TERM 1	Algebraic methods	 Use proof by contradiction to prove true statements Multiply and divide two or more algebraic fractions Add or subtract two or more algebraic factions Convert an expression with linear factors in the denominator into partial fractions Convert an expression with repeated linear factors in the denominator into partial fractions Divide algebraic expressions Convert an improper fraction into partial fraction form 	 proof by contradiction add, subtract, times, divide algebraic fractions partial fractions with linear factors, repeated factors in denominator algebraic long division improper fractions
	Functions and graphs	 Understand and use the modulus function Understand mappings and functions, and use domain and range combine two or more functions to make a composite function know how to find the inverse of a function graphically and algebraically Sketch the graphs of the modulus function y = f(x) and y = f(x) Apply a combination of two (or more) transformations to the same curve Transform the modulus function 	 modulus function mappings and functions domain and range composite function inverse of a function graphs of the modulus function y = f(x) and y = f(x) two (or more) transformations to the same curve

When?	Торіс	Knowledge	Unit Assessments
	Sequences and series	 Find the nth term of an arithmetic sequence Prove and use the formula for the sum of the first n terms of an arithmetic series Find the nth term of a geometric sequence Prove and use the formula for the sum of a finite geometric series Prove and use the formula for the sum to infinity of a convergent geometric series Use sigma notation to describe series Generate sequences from recurrence relations Model real-life situations with sequences and series 	 N-th term of an arithmetic and geometric Sn Sum to infinity sigma notation recurrence relations Model
HALF TERM 2	Binomial expansion	 Expand (1 + x)ⁿ for any rational constant n and determine the range of values of x for which the expression is valid Expand (a + bx)ⁿ for any rational constant n and determine the range of values of x for which the expression is valid Use partial fractions to expand fractional expressions 	 (1 + x)ⁿ (a + bx)ⁿ Use partial fractions
	Radians	 Convert between degrees and radians and apply this to trigonometric graphs and their transformations Know exact values of angles measured in radians Find an arc length using radians Find areas of sectors and segments using radians Solve trigonometric equations in radians Use approximate trigonometric values when θ is small 	 Use radians, with trig graphs and their transformations Exact values eg 30 = π/6 Arc length Sector area Solve trig equations with radians Trig approximations when Θ is small

When?	Торіс	Knowledge	Unit Assessments
	Trigonometric functions	 Understand the definition of secant, cosecant and cotangent and their relationship to cosine, sine and tangent Understand the graphs of secant, cosecant and cotangent and their domain and range Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent Prove and use sec² x ≡ 1 + tan² x and cosec² x ≡ 1 + cot² x understand and use inverse trigonometric functions and their domain and ranges 	 Use sec, cosec, cot, and their graphs Prove identities with sec, cosec, cot Prove and use sec² x ≡ 1 + tan² x and cosec² x ≡ 1 + cot² x inverse trigonometric functions and their domain and ranges
	Trigonometry and modelling	 Prove and use the addition formulae understand and use the double-angle formulae Solve trigonometric equations using the double-angle and addition formulae Write expressions of the form a cos θ ± b sin θ in the form R cos(θ ± a) or R sin(θ ± a) Prove trigonometric identities using a variety of identities Use trigonometric functions to model real-life situations 	 addition formulae double-angle formulae Solve trigonometric equations using the double-angle and addition formulae <i>R</i> cos(θ ± a), <i>R</i> sin(θ ± a) Prove trigonometric identities Use trigonometric functions to model real-life situations
HALF TERM 3	Parametric equations	 Convert parametric equations into Cartesian form by substitution Convert parametric equations into Cartesian form using trigonometric identities Understand and use parametric equations of curves and sketch parametric curves Solve coordinate geometry problems involving parametric equations Use parametric equations in modelling in a variety of contexts 	 parametric equations into Cartesian parametric equations into Cartesian form using trigonometric identities use parametric equations of curves sketch parametric curves Solve coordinate geometry problems modelling

When?	Торіс	Knowledge	Unit Assessments
	Differentiation	 Differentiate trigonometric functions Differentiate exponentials and logarithms Differentiate functions using the chain, product and quotient rules Differentiate parametric equations Differentiate functions which are defined implicitly Use the second derivative to describe the behaviour of a function Solve problems involving connected rates of change and construct simple differential equations 	Differentiation of/using trigonometric functions exponentials and logarithms using the chain, product and quotient rules parametric equations implicit second derivative connected rates of change differential equations
HALF TERM 4	Numerical methods	 Locate roots of f(x) = 0 by considering changes of sign Use iteration to find an approximation to the root of the equation f(x) = 0 Use the Newton-Raphson procedure to find approximations of the solutions of equations in the form f(x) = 0 Use numerical methods to solve problems in context 	 Locate roots Iteration Newton Raphson Numerical methods
	Integration	 Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions in the form of f (ax + b) Use trigonometric identities in integration Use the reverse of the chain rule to integrate more complex functions Integrate functions by making a substitution, using integration by parts and using partial fractions Use the trapezium rule to approximate the area under a curve Solve simple differential equations and model real-life situations with differential equations 	Integrate: • Trig functions • Exponentials • Using reverse chain rule • Using trig identities • By substitution • By parts • Using partial fractions • To find area under a curve Trapezium rule Solve differential equations, and model

When?	Торіс	Knowledge	Unit Assessments
	X. /		
	Vectors	Understand 3D Cartesian coordinatesUse vectors in three dimensions	 3D coordinates Vectors in 3D Solve problems with vectors
		Use vectors to solve geometric problemsModel 3D motion in mechanics with vectors	• 3D motion