

Year 13 Chemistry Curriculum Summary

YEAR GROUP: 13

SUBJECT: Chemistry

When?	Knowledge	Understanding	Assessment
Thermodynamics	ThermodynamicsBe able to:• Construct Born- Haber cycles to calculate lattice enthalpies and other enthalpy changes, and compare lattice enthalpies from Born-Haber cycles with those from calculations based on a perfect ionic model to provide evidence for covalent character in ionic compounds.• Use enthalpies of solution for ionic compounds from lattice enthalpies of hydration.• Understand the concept of increasing disorder (entropy change ΔS) plus calculate entropy values.	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. Thermodynamics Students perform calculations of an enthalpy change using Born-Haber cycles Students could be asked to find ΔS for vaporization of water using a kettle. Students rearrange the equation ΔG = ΔH – TΔS to find unknown values. Students determine ΔS and ΔH from a graph of ΔG versus T. 	Thermodynamics Test

	• Understand and use		
	the relationship $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$.		
Rate equation	<u>PC9 Rate equation</u> Be able to:	Students will carry out a range of practicals during the topic	Rate equation Test
Rate equation	Measure rate of	some of which will be formally assessed for the practical	Rule equation rest
	reaction	endorsement qualification.	Equilibria 2 Test
	experimentally		_
	using different	Rate equation	
	methods.		
	• Determine the rate	• Students use given rate data and deduce a rate equation,	
	equation from given	including units. Bate equations could be given and	
	• Perform	students asked to calculate rate constant or rate.	
	calculations using	• Students use a graph of concentration-time and calculate	
	the Arrhenius	the rate constant of a zero-order reaction by	
	equation	determination of the gradient.	
		• Students could determine the order of reaction for a	
Tourstands A		reactant in the iodine clock reaction.	
Equilibria 2	<u>Equilibria 2</u>	• Students could be given data to plot and interpret in	
	Ro oblo to:	terms of order with respect to a reactant. Alternatively,	
	be able to.	students could just be given appropriate graphs and asked to derive order(s)	
	expression for Kc	 Students calculate the rate constant of a zero-order 	
	for a homogeneous	reaction by determining the gradient of a concentration–	
	system in	time graph.	
	equilibrium and	• Students plot concentration-time graphs from collected	
	perform more	or supplied data and draw an appropriate best-fit curve.	
	complex	• Students draw tangents to such curves to deduce rates at	
	calculations	different times.	
	construct an	Fauilibria 2	
	expression for Kp		
	for a homogeneous	• Students report calculations to an appropriate number of	
	system in	significant figures, given raw data quoted to varying	
	equilibrium and	numbers of significant figures.	
	perform	• Students calculate the partial pressures of reactants and	

	 calculations involving Kp. calculate an equilibrium constant experimentally predict the qualitative effects of changes in temperature and pressure on the position of equilibrium and Kp. 	products at equilibrium. Students calculate the value of an equilibrium constant K p.	
isomerism, aldehydes e.t.c	 isomerism, aldehydes e.t.c Be able to: Name and draw aldehydes and ketones. outline the mechanism for nucleophilic addition reaction for the reduction of carbonyls and formation of hydroxynitriles. Draw pairs of enantiomers and describe their effect on plane polarised light. 	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. isomerism, aldehydes e.t.c Students could be asked to recognise the presence of a chiral centre in a given structure in 2D or 3D forms. They could also be asked to draw the 3D representation of chiral centres in various species. Students understand the origin of optical isomerism. Students could carry out test-tube reactions of Tollens' reagent and Fehling's solution to distinguish aldehydes and ketones. 	Isomerism, aldehydes e.t.c Test Electrochemistry Test

	Electrochemistry	Electrochemistry	
Electrochemis try	 Be able to: state and use the rules to assign oxidation states of a variety of elements in a compound or ion write half equations identifying oxidation and reduction and give overall redox equations write and draw the conventional representation of cells and calculate the EMF of a cell also SHE. use the EØ values to predict the direction of redox reactions Describe reactions in a lithium battery and fuel cells also use electrode data to deduce reaction in rechargeable and non-rechargeable and non-rechargeable and non-rechargeable cells. 	 Students could make simple cells and use them to measure unknown electrode potentials. Students could be asked to plan and carry out an experiment to investigate the effect of changing conditions, such as concentration or temperature, in a voltaic cell such as Zn Zn2+ Cu2+ Cu Students could use EO values to predict the direction of simple redox reactions, then test these predictions by simple test-tube reactions. Students investigate how knowledge and understanding of electrochemical cells has evolved from the first voltaic battery. 	
Carboxylic acids	Be able to: • Draw and name	some of which will be formally assessed for the practical endorsement qualification.	Carboxylic acids e.t.c Test

	carboyylic acids and		Acids and bases Test
	car boxyfic actus and	Carbovylia acids a t a	Actus and bases Test
	the reactions of	Carboxyne actus e.r.c	
	corboxylic ocids	• Students make estars by reacting cleanels with	
	car boxylic actus.	• Students make esters by reacting alconois with	
	• Write equations for	carboxylic acids, purifying the product using a	
	the formation and	separating funnel and by distillation	
	hydrolysis of esters.	• Students carry out the preparation of aspirin, purification	
	Outline mechanisms	by recrystallisation and determination of its melting	
	for nucleophilic	point.	
	addition-elimination	• Students carry out the purification of impure benzoic	
	reactions.	acid and determination of its melting point.	
	Describe different		
	organic techniques	Acids and bases	
	for synthesis,		
	separation and	• Students carry out pH calculations.	
	analysis.	• Students could be given concentration values and asked	
		to calculate pH or vice versa.	
	Acids and bases	• Students use an appropriate number of decimal places in	
Acids and Bases	Be able to:	pH calculations.	
		• Students understand standard form when applied to areas	
	• define an acid and a	such as (but not limited to)	
	base and identify	• Students use $KW = [H+][OH-]$ to find the pH of strong	
	conjugate acids and	bases.	
	bases	• Students carry out nKa calculations and give appropriate	
	• explain the pH of	units	
	pure water and	 Students understand standard form when applied to greas 	
	calculate pH for	• Students understand standard form when applied to areas	
	strong and weak	Studente could calculate Ve of a weak acid hy macauring	
	acids and strong	• Students could calculate Ka of a weak actu by measuring the pU at half neutralisation	
	bases.		
	• construct an	 Students could plot pH curves to show how pH changes 	
	expression for Ka	during reactions.	
	for a weak acid and	• Students make appropriate mathematical approximations	
	calculate from an	in butter calculations.	
	experiment		
	 sketch and explain 		
	the shanes of typical		
	nH curves and use		
	to determine		
	to actermine		

	 indicators explain the actions of an acidic and basic buffer and calculate the pH of acidic buffers. 		
Aromatics	AromaticsBe able to:• Describe the structure and bonding in benzene, including the stability of the benzene ring.• Explain the substitution reactions of Benzene including mechanisms	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. <u>Aromatics</u> Students use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability Students explain why substitution reactions occur in preference to addition reactions. Students outline mechanisms 	Aromatics Test
Nitrogen Chemistry	Nitrogen ChemistryBe able to:• Describe and outline the mechanism of the nucleophilic- addition elimination 	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. <u>Nitrogen Chemistry</u> Students explain the difference in base strength in terms of the availability of the lone pair of electrons on the N atom. Students describe and draw condensation polymers Students outline mechanisms. Students explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. Students draw the structures of amino acids as zwitterions and the ions formed from amino acids 	Nitrogen Chemistry Test IC4 Period 3 Test

	forces between them. • Name and draw amino acids as well as repeating units. • Describe DNA and	 proteins Students explain why a stereospecific active site can only bond to one enantiomeric form of a substrate or drug. Students explain how hydrogen bonding between base pairs leads to the two complementary strands of DNA 	
	draw repeating units and hydrogen bonds between DNA bases.	Period 3	
Period 3	 bases. <u>Period 3</u> Be able to: describe the reactions of sodium and Magnesium with water describe and explain the trends in reactions of the elements of sodium, magnesium aluminium, silicon, phosphorus and sulfur with oxygen describe the trends 	 Period 3 Students carry out reactions of elements with oxygen and test the pH of the resulting oxides. Students explain the trend in the melting point of the oxides of the elements Na–S in terms of their structure and bonding Students explain the trends in the reactions of the oxides with water in terms of the type of bonding present in each oxide Students write equations for the reactions that occur between the oxides of the elements Na–S and given acids and bases. 	
	 in metting points of the oxides of the elements Na-S describe the reactions of the oxides of the elements Na-S with water and the pH of the solutions formed 		

Organic Synthesis	and write equations for the reactions between oxides of the elements Na-S and acids and bases <u>Organic Synthesis</u> Be able to: • Be able to construct	Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification.	
Transitio n Metals	summary charts of organic reactions Be able to determine more complex organic synthesis pathways <u>Transition metals</u> Be able to:	 Organic Synthesis Students explain why chemists aim to design processes that do not require a solvent and that use non-hazardous starting materials Students explain why chemists aim to design production methods with fewer steps that have a high percentage atom economy Students use reactions learnt throughout the course to 	Organic Synthesis Test Transition Metals Test
	 write the electronic configurations of d block atoms and ions define complex ion and ligand plus determine the coordination number, types of ligands and shapes of complex ions 	 devise a synthesis, with up to four steps, for an organic compound. <u>Transition metals</u> Students carry out test-tube reactions of complexes with monodentate, bidentate and multidentate ligands to compare ease of substitution. Students carry out test-tube reactions of solutions of metal aqua ions with ammonia or concentrated hydrochloric acid. 	
	 identify the types of isomerism in octahedral and square complexes explain colour and spectroscopy in complex ions explain stability of complex ions Investigate 	 Students understand and draw the shape of complex ions. Students draw cis-trans and optical isomers. Students describe the types of stereoisomerism shown by molecules/ complexes. Students determine the concentration of a solution from a graph of absorption versus concentration. Students could carry out redox titrations. Students could identify unknown substances using reagents. 	

	1 6		
	complexes of copper		
	and oxidation states		
	• perform		
	calculations for		
	resolutions of redox		
	reactions		
	• explain catalysis in terms of transitions		
	metals and		
	compounds		
	• describe and explain		
	test tube reactions		
	on M^{2+} and M^{3+} ions		
	of hydroxide ions,		
	ammonia and		
	carbonate ions.		
	NMR and Chromatography	Students will carry out a range of practicals during the topic,	
NMR and	Be able to:	some of which will be formally assessed for the practical	NMR and Chromatography Test
Chromatography		endorsement qualification.	
	• Analyse NMR		
	chromatograms for C	NMR and Unromatography	
	integration showing	• Students should be able to use date in the Chemister	
	shift values and splitting	Students should be able to use data in the Chemistry Data Pooklet to suggest possible structures for	
	natterns where	molecules	
	applicable.	 Students calculate Rf values from a chromatogram 	
	 Describe gas, column. 	 Students compare retention times and Rf values with 	
	and TLC	standards to identify different substances.	
	chromatography.		