

Year 12 Pure Maths Curriculum Summary

Y12 Pure Mathematics

When?	Topic	Knowledge	Unit Assessment
HALF TERM 2	Equations and inequalities	- Solve linear simultaneous equations using elimination or substitution - Solve simultaneous equations: one linear and one quadratic - Interpret algebraic solutions of equations graphically - Solve linear inequalities - Solve quadratic inequalities - Interpret inequalities graphically - Represent linear and quadratic inequalities graphically	- simultaneous equations, linear and quadratics - inequalities, linear and quadratics
	Graphs and transformations	- Sketch cubic graphs - Sketch quartic graphs - Sketch reciprocal graphs of the form $y=x^{a}$ and $y=a x^{2}$ - Use intersection points of graphs to solve equations - Translate graphs - Stretch graphs - Transform graphs of unfamiliar functions	- sketch cubic, quartic, reciprocal - solve equations - translate, stretch, transform graphs
	Straight line graphs	- Calculate the gradient of a line joining a pair of points - Understand the link between the equation of a line, and its gradient and intercept - Find the equation of a line given (i) the gradient and one point on the line or (ii) two points on the line - Find the point of intersection for a pair of straight lines - Know and use the rules for parallel and perpendicular gradients - Solve length and area problems on coordinate grids - Use straight line graphs to construct mathematical models	- gradient - $y=m x+c$ - points of intersection - parallel and perpendicular gradients - length and area problems - modelling

When?	Topic	Knowledge	Unit Assessment
$\begin{aligned} & \text { HALF } \\ & \text { TERM } 3 \end{aligned}$	Circles	- Find the midpoint of a line segment - Find the equation of the perpendicular bisector to a line segment - Know how to find the equation of a circle - Solve geometric problems involving straight lines and circles - Use circle properties to solve problems on coordinate grids - Find the angle in a semicircle and solve other problems involving circles and triangles	- midpoint - perpendicular bisector - equation of a circle - straight lines and circles - circle properties - angle in a semicircle
	Algebraic methods	- Cancel factors in algebraic fractions - Divide a polynomial by a linear expression - Use the factor theorem to factorise a cubic expression - Construct mathematical proofs using algebra - Use proof by exhaustion and disproof by counterexample	- algebraic fractions - algebraic long division - algebraic proof - proof by exhaustion and disproof by counterexample
	The binomial expansion	- Use Pascal's triangle to identify binomial coefficients and use them to expand simple binomial expressions - Use combinations and factorial notation - Use the binomial expansion to expand brackets - Find individual coefficients in a binomial expansion - Make approximations using the binomial expansion	- Pascal's triangle - combinations and factorial notation - binomial expansion - approximations using the binomial expansion
	Trigonometric ratios	- Use the cosine rule to find a missing side or angle - Use the sine rule to find a missing side or angle - Find the area of a triangle using an appropriate formula - Solve problems involving triangles - Sketch the graphs of the sine, cosine and tangent functions - Sketch simple transformations of these graphs	- cosine rule - sine rule - area of a triangle - graphs of the sine, cosine and tangent functions - Sketch simple transformations of these graphs

When?	Topic	Knowledge	Unit Assessment
$\begin{aligned} & \text { HALF } \\ & \text { TERM } 4 \end{aligned}$	Trigonometric identities and equations	- Calculate the sine, cosine and tangent of any angle - Know the exact trigonometric ratios for $30^{\circ}, 45^{\circ}$ and 60° - Know and use the relationships $\tan \theta=\sin \theta / \cos \theta$ and $\sin ^{2} \theta+\cos ^{2} \theta=1$ - Solve simple trigonometric equations of the forms \sin $\theta=\mathrm{k}, \cos \theta=\mathrm{k}$ and $\tan \theta=\mathrm{k}$ - Solve more complicated trigonometric equations of the forms $\sin \mathrm{n} \theta=\mathrm{k}$ and $\sin (\theta+-\alpha)=\mathrm{k}$ and equivalent equations involving \cos and tan - Solve trigonometric equations that produce quadratics	- Sin, cos, tan - exact trigonometric ratios for $30^{\circ}, 45^{\circ}$ and 60° - relationships $\tan \theta=\sin \theta / \cos \theta$ and $\sin ^{2} \theta+$ $\cos ^{2} \theta=1$ - Solve simple trigonometric equations - $\quad \sin (\theta+-\alpha)=k$
	Vectors	- Use vectors in two dimensions - Use column vectors and carry out arithmetic operations on vectors - Calculate the magnitude and direction of a vector - Understand and use position vectors - Use vectors to solve geometric problems - Understand vector magnitude and use vectors in speed and distance calculations - Use vectors to solve problems in context	- 2D vectors - Column vectors - Magnitude and direction - Position vectors - Vector problems - vectors in speedand distance calculations
	Differentiation	- Find the derivative, $f^{\prime}(x)$ or $d y / d x$, of a simple function - Use the derivative to solve problems involving gradients, tangents and normals - Identify increasing and decreasing functions - Find the second order derivative, f '' (x) or $d^{2} y / d^{2}$, of asimple function - Find stationary points of functions and determine their nature - Sketch the gradient function of a given function - Model real-life situations with differentiation	- $\mathrm{f}^{\prime}(\mathrm{x})$ or $\mathrm{dy} / \mathrm{dx}$ - gradients, tangents and normal - increasing and decreasing functions - $f^{\prime \prime}(x)$ or $d^{2} y / d x^{2}$ - stationary points - gradient function - modelling

When?	Topic	Knowledge	Unit Assessment
$\begin{aligned} & \text { HALF } \\ & \text { TERM } 5 \end{aligned}$	Integration	- Find y given $d y / d x$ for x^{n} - Integrate polynomials - Find $f(x)$, given $f^{\prime}(x)$ and a point on the curve - Evaluate a definite integral - Find the area bounded by a curve and the x -axis - Find areas bounded by curves and straight lines	- integrate term by term - definite integrals - bounded area
	Exponentials and logarithms	- Sketch graphs of the form $y=a^{x}, y=e^{x}$, and transformations of these graphs - Differentiate e^{kx} and understand why this result is important - Use and interpret models that use exponential functions - Recognise the relationship between exponents and logarithms - Recall and apply the laws of logarithms - Solve equations of the form $a^{x}=b$ - Describe and use the natural logarithm function - Use logarithms to estimate the values of constants in non-linear models	- sketch and transform $\mathrm{y}=\mathrm{a}^{\mathrm{x}}, \mathrm{y}=\mathrm{e}^{\mathrm{x}}$ - Differentiate e^{kx} - laws of logarithms - solve equations using logs - natural logs - modelling

