



## Year 12 Mechanics Curriculum Summary



## Y12 Mechanics

| When?          | Торіс                  | Knowledge                                                                                                                                                                                                                                                                                                                                                                                                   | Unit Assessment                                                                                                                                                    |
|----------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HALF<br>TERM 1 | Modelling in Mechanics | <ul> <li>Understand how the concept of a mathematical model applies to mechanics</li> <li>Understand and be able to apply some of the common assumptions used in mechanical models</li> <li>Know SI units for quantities and derived quantities used in mechanics</li> <li>Know the difference between scalar and vector quantities</li> </ul>                                                              | <ul> <li>Mathematical models</li> <li>Mechanical models</li> <li>Units of measure</li> <li>Scalar and vector quantities</li> </ul>                                 |
| HALF<br>TERM 3 | Constant Acceleration  | <ul> <li>Understand and interpret displacement-time graphs</li> <li>Understand and interpret velocity-time graphs</li> <li>Derive the constant acceleration formulae and use them to solve problems</li> <li>Use the constant acceleration formulae to solve problems involving vertical motion under gravity</li> </ul>                                                                                    | <ul> <li>Displacement-time graphs</li> <li>Constant acceleration formulae</li> <li>Solve problems involving vertical motion under gravity</li> </ul>               |
| HALF<br>TERM 5 | Forces & Motion        | <ul> <li>Draw force diagrams and calculate resultant forces</li> <li>Understand and use Newton's first law</li> <li>Calculate resultant forces by adding vectors</li> <li>Understand and use Newton's second law, F=ma</li> <li>Apply Newton's second law to vector forces and acceleration</li> <li>Understand and use Newton's third law</li> <li>Solve problems involving connected particles</li> </ul> | <ul> <li>Force diagrams</li> <li>Resultant forces</li> <li>Newton's first law, second law, third law</li> <li>Acceleration</li> <li>Connected particles</li> </ul> |



| When?          | Торіс                 | Knowledge                                                                                                                                                                                                                                                                                           | Unit Assessment                                                                                                                                                                                                          |
|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HALF<br>TERM 6 | Variable acceleration | <ul> <li>Understand that displacement,</li> <li>Use differentiation to solve kinematics problems</li> <li>Use calculus to solve problems involving maxima and minima</li> <li>Use integration to solve kinematics problems</li> <li>Use calculus to derive constant acceleration formula</li> </ul> | <ul> <li>Displacement, velocity and acceleration may be given as functions of time</li> <li>Calculus (differentiation and integration) to solve problems (kinematics, max/min, constant acceleration formula)</li> </ul> |