

Year 12 Chemistry Curriculum Summary

YEAR GROUP: 12

SUBJECT: Chemistry

When?	Knowledge	Understanding	Assessment
	PC1 Atomic Structure		
Atomic Structure	Be able to: • Draw the structure of the atom and	Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification.	
	calculate	Atomic Structure	Atomic Structure Test
	information about		Atomic Structure Test
	protons, neutrons	• Students report calculations to an appropriate number of	Amount of Substance Test
	electrons, and mass	significant figures, given raw data quoted to varying	
	numbers.	numbers of significant figures.	
	• Be able to explain	• Students calculate weighted means eg calculation of an	
	how a mass	atomic mass based on supplied isotopic abundances.	
	spectrometer works	• Students interpret and analyse spectra.	
	and carry out		
	calculations relating		
	to the mass		
	spectrometer.	Amount of Substance	
	Write electronic		
	configurations for	• Students carry out calculations using numbers in	
	structures.	standard and ordinary form eg using the Avogadro	
	Define ionisation	constant.	
	energies and write	• Students carry out calculations using the Avogadro	
	equations for ionisation energies.	constant.	
Amount of	ionisation energies.	Students report calculations to an appropriate number of	
Substance	PC2 Amount of Substance	significant figures, given raw data quoted to varying numbers of significant figures. Students understand that	
	1 C2 Amount of Substance	calculated results can only be reported to the limits of the	
	Be able to:	least accurate measurement.	
	• Calculate M _r and A _r	 Students carry out calculations with the ideal gas 	
	Calculate moles and	equation, including rearranging the ideal gas equation to	
	use moles to	find unknown quantities.	
	calculate reacting	• Students could be asked to find the empirical formula of	
	masses, volumes	a metal oxide.	
	and concentrations.	• Students calculate percentage yields and atom economies	
	• Use the ideal gas	of reactions.	

Bonding	 equation. Calculate the empirical formula of compounds. Carry out Titrations experimentally and use results to calculate concentrations. Be able to: Describe the structure and bonding for ionic, covalent and metallic structures. Describe different types of intermolecular forces and their strengths. Draw and state the bond shapes and angles for different 	 Students determine uncertainty when two burette readings are used to calculate a titre value. Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. Bonding Students could be asked to find the type of structure of unknowns by experiment (eg to test solubility, conductivity and ease of melting). Students could be given familiar and unfamiliar examples of species and asked to deduce the shape according to valence shell electron pair repulsion (VSEPR) principles. 	Bonding Test
Energetics	molecules. <u>Energetics</u> Be able to:	Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification.	Energetics Test
	 Define Hess's law and create Hess cycles to calculate enthalpy changes. Describe combustion and write combustion equations. Measure experimentally and 	 Energetics Students understand that the correct units need to be used in q = mcΔT Students could be asked to find ΔH for a reaction by calorimetry Students could be asked to find ΔH for a reaction using Hess's law and calorimetry, then present data in appropriate ways Students understand that bond enthalpies are mean 	Intro. to Organic Chemistry and Alkanes Test

Intro to Organic Chemistry and Alkanes	calculate enthalpy change and mean bond enthalpy.Intro to Organic Chemistry and AlkanesIntro to Organic Chemistry and AlkanesBe able to:• Name organic molecules and identify their 	 values across a range of compounds containing that bond. Intro to Organic Chemistry and Alkanes Student draw structural, displayed and skeletal formulas for given organic compounds Students apply IUPAC rules for nomenclature to name organic compounds limited to chains and rings with up to six carbon atoms each Students apply IUPAC rules for nomenclature to draw the structure of an organic compound from the IUPAC name limited to chains and rings with up to six carbon atoms each. Students could be given the structure of one isomer and asked to draw further isomers. Various representations could be used to give the opportunity to identify those that are isomeric. Students draw different forms of isomers. Students explain the economic reasons for cracking alkanes. Students explain the free-radical substitution mechanism involving initiation, propagation and termination steps. 	
Kinetics and Equilibrium	substitution and write equations for the steps involved. <u>Kinetics and equilibrium</u> Be able to:	Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification.	Kinetics and Equilibrium Test
Equilibrium	 Describe how changing temperature, concentration and pressure effect rate of reaction. Draw and interpret 	 Students investigate the effect of temperature on the rate of reaction of sodium thiosulfate and hydrochloric acid by an initial rate method. Students investigate the effect of changing the 	Halogenoalkanes Test

Halogenoalkanes	Maxwell-boltzman distributions for different reaction conditions• Perform calculations using Kc and explain how Kc changes with temperature.OC3 HalogenoalkanesBe able to: • Describe and draw mechanisms for nucleophilic substitution and elimination reactions. • Prepare and purify a halogenoalkane.	 concentration of acid on the rate of a reaction of calcium carbonate and hydrochloric acid by a continuous monitoring method. Students carry out test-tube equilibrium shifts to show the effect of concentration and temperature. Students estimate the effect of changing experimental parameters on a measurable value eg how the value of Kc would change with temperature, given different specified conditions. Students calculate the concentration of a reagent at equilibrium. Students calculate the value of an equilibrium constant Kc OC3 Halogenoalkanes Students follow instructions when carrying out test-tube hydrolysis of halogenoalkanes to show their relative rates of reaction. Students prepare a chloroalkane, purifying the product using a separating funnel and distillation. Students use equations to explain how chlorine atoms catalyse decomposition of ozone. 	
Alkenes	 Be able to: Describe the reactions of alkenes including drawing mechanisms for electrophilic addition and elimination reactions. Draw repeating untis of polymers and be able to describe the reactivity of 	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. <u>Alkenes</u> Students outline the mechanisms for reactions Students explain the formation of major and minor products by reference to the relative stabilities of primary, secondary and tertiary carbocation intermediates. Students test organic compounds for unsaturation using bromine water and record their observations. Students explain addition polymerisation. 	Alkenes Test

	different nelumers		
Redox	different polymers.RedoxBe able to:•Write half equations assigning oxidation and reduction.•Write full balanced equations using oxidation states.•Write full balanced equations using oxidation states.AlcoholsEe able to:•Carry out an experiment which oxidises alcohols and explain the oxidation of alcohols using reflux and distillation.•Outline the mechanism of generating alcohols from alkenes.•Discuss how alcohols are produced industrially and their uses.	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. Redox Students work out the oxidation state of an element in a compound or ion from the formula Students write half-equations identifying the oxidation and reduction processes in redox reactions Students combine half-equations to give an overall redox equation. Alcohols Students outline the mechanism for the formation of an alcohol by the reaction of an alkene with steam in the presence of an acid catalyst. Students carry out the preparation of an aldehyde by the oxidation of a primary alcohol. Students outline the mechanism for the elimination of water from alcohols 	Redox Test
Periodicity and group 2	IC1 + IC2 Periodicity and Group 2 Be able to: • Describe the term periodicity and the trends across the periods • Describe and	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. <u>Periodicity and Group 2</u> Students explain the trends in atomic radius and first ionisation energy Students test the reactions of Mg–Ba with water and Mg 	: Quantitative Chemistry Test

Organic Analysis	explain trends in group 2 • Describe and explain the reactions of Group 2 Metals. Be able to: • Use IR and mass spectrometry to identify functional groups.	 with steam and record their results Students test the solubility of Group 2 hydroxides by mixing solutions of soluble Group 2 salts with sodium hydroxide and record their results. Students test the solubility of Group 2 sulfates by mixing solutions of soluble Group 2 salts with sulfuric acid and record their results. Students test for sulfate ions using acidified barium chloride and record their results. Organic Analysis Students carry out test-tube reactions in the specification to distinguish alcohols, aldehydes, alkenes and carboxylic acids. Students should be able to use data in the Chemistry Data Sheet or Booklet to suggest possible structures for molecules. 	
Group 7	<u>Group 7</u> Be able to: Describe and explain the properties in Group 7 Describe and explain the reactions of Group 7 elements including displacement reactions.	 Students will carry out a range of practicals during the topic, some of which will be formally assessed for the practical endorsement qualification. <u>IC3 Group 7</u> Students carry out test-tube reactions of solutions of the halogens with solutions containing their halide ions. Students record observations from reactions of NaCl, NaBr and NaI with concentrated sulfuric acid. Students carry out tests for halide ions using acidified silver nitrate, including the use of ammonia to distinguish the silver halides formed. 	Group 7 Test