

Year 11 Maths Learning Journey

YEAR GROUP: 11

SUBJECT: Maths

When?	Topic	Knowledge	Unit Assessments
$\begin{aligned} & \text { HALF } \\ & \text { TERM } 1 \end{aligned}$	Probability: Combined events	- work out the probability of two events - draw and use tree diagrams - use probability for independent events - use conditional probability.	Probability of 2 events, tree diagrams, independent events, conditional probability
	Geometry \& Measures: Properties of circles: (circle theorems)	- prove and use circle theorems to work out angles - work out angles in cyclic quadrilaterals - use tangents, chords and alternate segment theorem to work out angles in circles.	Prove and use circle theorems, cyclic quadrilaterals, tangents, chords and alternate segment theorem Direct proportion, indirect (inverse) proportion, graphs that represent direct \& inverse proportion
TERM 2	Ratio, proportion and rates of change: Variation	- solve problems where two variables are connected by a relationship in which they vary in direct proportion - solve problems where two variables are connected by a relationship in which they vary in indirect proportion - recognise graphs that illustrate direct and inverse proportion.	SOHCAHTOA in 2D and 3D problems, solve simple trig equations eg $\operatorname{Sin} x=0.2$, Sine and Cosine rule, area of a triangle

When?	Topic	Knowledge	Unit Assessments
	Geometry \& measures: triangles Algebra: Graphs	- use trigonometric ratios to solve more complex 2D problems and 3D problems - calculate the sine, cosine and tangent of any angle from 0° to 360° - use the sine and cosine rules to solve problems involving non right-angled triangles - use the formula $A=\frac{1}{2} a b \sin C$ to calculate the area of a triangle. - work out speed from a distance-time graph - interpret the gradients of straight lines on a velocity-time graph - calculate and interpret the area under a velocity-time graph consisting of straight lines - draw a graph of the depth of liquid as a container is filled - estimate and interpret the area under a curve - work out and interpret a gradient at a point on a curve - find the equation of a tangent to a circle - recognise and draw cubic, reciprocal and exponential graphs	Speed, gradients on a velocity-time graph, area under a velocity-time graph, area under a curve, gradient at a point, equation of a tangent to a circle, cubic, reciprocal and exponential graphs, transform graphs

When?	Topic	Knowledge	Unit Assessments
	Algebra: Algebraic fractions \& functions Geometry \& Measures: vector geometry	- transform a graph. - combine fractions algebraically and solve equations with algebraic fractions - rearrange and change the subject of a formula where the subject appears twice, or as a power - find the inverse function and the composite of two functions - find an approximate solution for an equation using the process of iteration. - add and subtract vectors - the properties of vectors - use vectors to solve geometrical problems - prove geometric results.	Algebraic fractions, rearrange formula, inverse \& converse functions Add \& subtract vectors, properties of vectors, vector problems, vector proof

