

Year 11 Biology Curriculum Summary

YEAR GROUP: 11 FMS

SUBJECT: Chemistry

When?	Knowledge	Understanding	Assessment
Chemical analysis and Topic 6b Equilibrium	 Be able to: describe and explain the differences between pure substances and impure mixtures carry out experiments involving chromatography and explain the results describe the tests for different gases. 	Students will carry out a range of practical experiments during these topics. Chemical analysis key vocabulary: Retention factor Chromatography Pure substance mixture	Chemical Analysis and Topic 6b: Equilibrium Test
	 Be able to: define reversible reactions and dynamic equilibrium and what happens to the energy transferred in reversible reactions. Describe the effects of temperature. concentration, pressure and a catalyst on dynamic equilibrium. 	Equilibrium key vocabulary: anhydrous closed system collision theory equilibrium hydrated Le Châtelier's Principle reversible reaction	
Further	Be able to:	Students will carry out a range of	

Chemical Analysis	 Describe the tests and positive results for positive and negative ion tests. Describe the advantages of instrumental methods including flame emission spectroscopy. 	practical experiments during these topics. Further Chemical Analysis Flame emission spectroscopy Nichrome loop	Further Chemical Analysis Test
Further Quantitative Chemistry	 Be able to: Calculate percentage yield and atom economy and explain why percentage yield is not always 100%. Describe how to carry out a titration experiment including calculations. Calculate the volume of gases at room temperature and pressure. 	Students will carry out a range of practical experiments during these topics. Further Quantitative Chemistry key vocabulary: burette concentration concordant end point mole percentage yield pipette titration yield	Further Quantitative Chemistry Test
The Earth's Resources	 Be able to: Describe the differences between renewable and non-renewable resources. Describe alternative methods of extracting metals from their ores. Describe different methods of treatment of water sources. Evaluate the life cycle 	Students will carry out a range of practical experiments during these topics. : The Earth's Resources key vocabulary: Bioleaching blast furnace life cycle assessment (LCA) non-renewable thermal decomposition	The Earth's Resources Test

Using Our resources	assessment of different products. Be able to: Describe corrosion and explain different preventative methods. Describe the properties of glass, ceramics, composites and alloys Describe and explain the conditions and processes involved in the Haber process.	Students will carry out a range of practical experiments during these topics. Using Our resources key vocabulary: alloy carbon steel galvanised neutralisation polymer rusting sacrificial protection stainless steel steel thermosetting polymer	Using Our resources Test
		thermosetting polymer thermosoftening polymer	