

Year 10 Physics Curriculum Summary

YEAR GROUP: 10 FMS

SUBJECT: Physics

When?	Knowledge	Understanding	Assessment
Radioactivity	Be able to: Describe what a radioactive substance is Describe the different types of radiation give out by a radioactive substance Describe the different models of the atom Describe the differences between alpha, beta and gamma radiation Define and calculate half life	Students will carry out a range of practical experiments during these topics. Radioactivity key words: activity alpha radiation (α) atomic number beta radiation (β) gamma radiation (γ) half-life isotopes mass number nuclear fission nuclear fission reactor nuclear fusion radioactive contamination reactor core	Radioactivity assessment
Electric Circuits	Draw and interpret circuit diagrams Recall and apply the potential difference equation Describe how resistance changes under different conditions Draw and describe parallel and series circuits	Students will carry out a range of practical experiments during these topics. Electric Circuits key words: diode electrons light-depending resistor (LDR) light-emitting diode (LED) Ohm's law parallel potential difference	Electric circuits assessment

Electricity in the home	Be able to: • explain the difference between direct and alternating potential difference • explain that a live wire may be dangerous even when a switch in the mains circuit is open • explain the dangers of providing any connection between the live wire and earth. • Recall and apply the charge flow equation	resistance series thermistor Students will carry out a range of practical experiments during these topics. Electricity in the home key words: alternating current (a.c.) direct current (d.c.) earth wire fuse live wire neutral wire oscilloscope plugs step-down transformers step-up transformers three-pin plug	Electricity in the home assessment
Forces in balance	 Define displacement, vector quantity and scalar quantity Define resultant force and describe what happens under different conditions Calculate the moment of 	Students will carry out a range of practical experiments during these topics. Forces in balance key words: displacement driving force effort	Forces in balance assessment

	 a force and describe why levers are force multipliers Define centre of mass and calculate for a symmetrical object Calculate turning forces and their direction Describe the parallelogram of force and what it is used for 	force multiplier forces free-body force diagram friction load magnitude moment Newton's first law of motion Newton's third law of motion parallelogram of forces principle of moments resultant force scalar vector	
Motion	recall typical values of speed for a person walking, running and cycling as well as the typical values of speed for different types of transportation systems make measurements of distance and time and then calculate speeds of objects explain the vector–scalar distinction as it applies to displacement, distance, velocity and speed determine speed from a distance–time graph	Students will carry out a range of practical experiments during these topics. Motion key words: acceleration deceleration displacement gradient (of a straight line graph) tangent velocity	Motion assessment
forces and motion	Be able to: estimate the magnitude of everyday accelerations draw velocity-time	Students will carry out a range of practical experiments during these topics.	forces and motion assessment

	graphs from	forces and motion key words:	
	measurements and	braking distance	
	interpret lines and slopes	conservation of momentum	
	to determine acceleration	directly proportional	
	 estimate the braking 	elastic	
	force of a vehicle	extension	
	 calculate momentum and 	gravitational field strength, g	
	describe what it means	inertia	
	for a closed system	limit of proportionality	
	• calculate the extension of	mass	
	an object when it is	momentum	
	stretched and describe	Newton's second law of motion	
	elasticity.	stopping distance	
	ciasticity.	terminal velocity	
		thinking distance	
		weight	
Force and	Be able to:	Force and pressure key words:	
pressure	 Define pressure and use 		Force and pressure assessment
•	the pressure equation	upthrust	*
	Describe what the		
	pressure of a liquid		
	depends on		
	• Define atmospheric		
	pressure and explain		
	why it changes with		
	altitude		
	Describe what is meant		
	by an upthrust on an		
	object in fluid		