

Year 10 Physics Curriculum Summary

YEAR GROUP: 10 LETCH

SUBJECT: Physics

When?	Knowledge	Understanding	Assessment
Radioactivity	Describe what a radioactive substance is Describe the different types of radiation give out by a radioactive substance Describe the different models of the atom Describe the differences between alpha, beta and gamma radiation Define and calculate half life	Students will carry out a range of practical experiments during these topics. Radioactivity key words: activity alpha radiation (α) atomic number beta radiation (β) gamma radiation (γ) half-life isotopes mass number nuclear fission nuclear fission reactor nuclear fusion radioactive contamination reactor core	Radioactivity assessment
Electric Circuits	Draw and interpret circuit diagrams Recall and apply the potential difference equation Describe how resistance changes under different conditions Draw and describe parallel and series circuits	Students will carry out a range of practical experiments during these topics. Electric Circuits key words: diode electrons light-depending resistor (LDR) light-emitting diode (LED) Ohm's law parallel potential difference resistance	Electric circuits assessment

Electricity in the home	Be able to: explain the difference between direct and alternating potential difference explain that a live wire may be dangerous even when a switch in the mains circuit is open explain the dangers of providing any connection between the live wire and earth. Recall and apply the charge flow equation	series thermistor Students will carry out a range of practical experiments during these topics. Electricity in the home key words: alternating current (a.c.) direct current (d.c.) earth wire fuse live wire neutral wire oscilloscope plugs step-down transformers step-up transformers three-pin plug	Electricity in the home assessment
Forces in balance	Be able to: Define displacement, vector quantity and scalar quantity Define resultant force and describe what happens under different conditions Define centre of mass and calculate for a	Students will carry out a range of practical experiments during these topics. Forces in balance key words: displacement driving force effort force multiplier	Forces in balance assessment

	symmetrical object • Describe the parallelogram of force and what it is used for	forces free-body force diagram friction load magnitude moment Newton's first law of motion Newton's third law of motion parallelogram of forces principle of moments resultant force scalar vector	
Motion	recall typical values of speed for a person walking, running and cycling as well as the typical values of speed for different types of transportation systems make measurements of distance and time and then calculate speeds of objects explain the vector–scalar distinction as it applies to displacement, distance, velocity and speed determine speed from a distance–time graph	Students will carry out a range of practical experiments during these topics. Motion key words: acceleration deceleration displacement gradient (of a straight line graph) tangent velocity	Motion assessment
forces and motion	Be able to:	Students will carry out a range of practical experiments during these topics. forces and motion key words:	forces and motion assessment

measurements and	braking distance	
interpret lines and slopes	conservation of momentum	
to determine acceleration	directly proportional	
 estimate the braking 	elastic	
force of a vehicle	extension	
 calculate momentum and 	gravitational field strength, g	
describe what it means	inertia	
for a closed system	limit of proportionality	
 calculate the extension of 	mass	
an object when it is	momentum	
stretched and describe	Newton's second law of motion	
elasticity.	stopping distance	
•	terminal velocity	
	thinking distance	
	weight	